UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1

نویسندگان

  • Shirley McCready
  • Jochen A Müller
  • Ivan Boubriak
  • Brian R Berquist
  • Wooi Loon Ng
  • Shiladitya DasSarma
چکیده

BACKGROUND A variety of strategies for survival of UV irradiation are used by cells, ranging from repair of UV-damaged DNA, cell cycle arrest, tolerance of unrepaired UV photoproducts, and shielding from UV light. Some of these responses involve UV-inducible genes, including the SOS response in bacteria and an array of genes in eukaryotes. To address the mechanisms used in the third branch of life, we have studied the model archaeon, Halobacterium sp. strain NRC-1, which tolerates high levels of solar radiation in its natural hypersaline environment. RESULTS Cells were irradiated with 30-70 J/m(2) UV-C and an immunoassay showed that the resulting DNA damage was largely repaired within 3 hours in the dark. Under such conditions, transcriptional profiling showed the most strongly up-regulated gene was radA1, the archaeal homolog of rad51/recA, which was induced 7-fold. Additional genes involved in homologous recombination, such as arj1 (recJ-like exonuclease), dbp (eukaryote-like DNA binding protein of the superfamily I DNA and RNA helicases), and rfa3 (replication protein A complex), as well as nrdJ, encoding for cobalamin-dependent ribonucleotide reductase involved in DNA metabolism, was also significantly induced in one or more of our experimental conditions. Neither prokaryotic nor eukaryotic excision repair gene homologs were induced and there was no evidence of an SOS-like response. CONCLUSION These results show that homologous recombination plays an important role in the cellular response of Halobacterium sp. NRC-1 to UV damage. Homologous recombination may permit rescue of stalled replication forks, and/or facilitate recombinational repair. In either case, this provides a mechanism for the observed high-frequency recombination among natural populations of halophilic archaea.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The uvrA, uvrB and uvrC genes are required for repair of ultraviolet light induced DNA photoproducts in Halobacterium sp. NRC-1

BACKGROUND Sequenced archaeal genomes contain a variety of bacterial and eukaryotic DNA repair gene homologs, but relatively little is known about how these microorganisms actually perform DNA repair. At least some archaea, including the extreme halophile Halobacterium sp. NRC-1, are able to repair ultraviolet light (UV) induced DNA damage in the absence of light-dependent photoreactivation but...

متن کامل

Transcriptional responses to biologically relevant doses of UV-B radiation in the model archaeon, Halobacterium sp. NRC-1

BACKGROUND Most studies of the transcriptional response to UV radiation in living cells have used UV doses that are much higher than those encountered in the natural environment, and most focus on short-wave UV (UV-C) at 254 nm, a wavelength that never reaches the Earth's surface. We have studied the transcriptional response of the sunlight-tolerant model archaeon, Halobacterium sp. NRC-1, to l...

متن کامل

The cobY gene of the archaeon Halobacterium sp. strain NRC-1 is required for de novo cobamide synthesis.

Genetic and nutritional analyses of mutants of the extremely halophilic archaeon Halobacterium sp. strain NRC-1 showed that open reading frame (ORF) Vng1581C encodes a protein with nucleoside triphosphate:adenosylcobinamide-phosphate nucleotidyltransferase enzyme activity. This activity was previously associated with the cobY gene of the methanogenic archaeon Methanobacterium thermoautotrophicu...

متن کامل

Transcriptional profiling of the model Archaeon Halobacterium sp. NRC-1: responses to changes in salinity and temperature

BACKGROUND The model halophile Halobacterium sp. NRC-1 was among the first Archaea to be completely sequenced and many post-genomic tools, including whole genome DNA microarrays are now being applied to its analysis. This extremophile displays tolerance to multiple stresses, including high salinity, extreme (non-mesophilic) temperatures, lack of oxygen, and ultraviolet and ionizing radiation. ...

متن کامل

Dna Mismatch Repair and Response to Oxidative Stress in the Extremely Halophilic Archaeon Halobacterium Sp. Strain Nrc-1

Title of Document: DNA MISMATCH REPAIR AND RESPONSE TO OXIDATIVE STRESS IN THE EXTREMELY HALOPHILIC ARCHAEON HALOBACTERIUM SP. STRAIN NRC-1 Courtney Rae Busch, Doctor of Philosophy, 2008 Directed By: Assistant Professor Dr. Jocelyne DiRuggiero, Department of Cell Biology and Molecular Genetics Halobacterium is an extremely halophilic archaeon that has homologs of the key proteins, MutS and MutL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Saline Systems

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2005